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ABSTRACT 

This research represents the first phase of a new attack on 

the difficult problem of predicting the results of a collision 

between polyatomic molecules.    We treat the translational motion 

of the molecules by classical mechanics,   and the internal motions 

by quantum mechanics.    The effect on the trajectory of a quantum 

transition of the internal coordinates is   obtained by requiring that 

the classical conservation laws of energy and angular momentum 

be satisfied at all times.    This method gives a description of the 

molecular trajectories in both adiabatic and non adiabatic 

collisions which is much more detailed than has been considered 

previously.    Such detailed information about the trajectories is 

especially important for applications to the kinetic theory of gasee. 

Our theory requires that one know the relative probability 

that a quantum transition of the internal coordinates takes place 

at various points along the collision trajectory.    Because of 

diffraction effects and limitations due to the uncertainty principle, 

such information is not directly available from quantum mechanics. 

* This work was carried out at the University of Wisconsin 
Naval Research Laboratory and was supported in part by 
Contract N7onr-2851I. 



An approximate formula,   suggested by the form of the quantum 

mechanical equations,   is proposed for calculating this probability 

distribution. 

The theory is illustrated by sample calculations for the exchange 

of rotational energy between linear polar molecules.    On the basis 

of some of these calculations and some earlier work by F.  J.  Krieger 

[Proj.   RAND Report.   RM  646 (195))]    a method is proposed for 

calculating the viscosity of polar gases.    The gas js viewed as a 

mixture of molecular species,   with each set of internal quantum 

numbers defining a separate species.    In non resonant collisions be- 

tween linear molecules-   the interaction energy is   taken to be of the 

form of the Lennard-Jones potential,   with a repulsive energy term 

proportional to the minus twelfth power of the separation and an at- 

tractive term proportional to the minus sixth power of the separation. 

When the molecules are in resonance,   an additional term proportional 

to the minus third power of the separation must be included.    This 

term may be either repulsive or attractive;   its coefficient can be 

calculated from a knowledge of the internal quantum numbers. 

In order to   test this proposed method for predicting the viscosity 

of polar gases it would be. necessary to calculate the dynamics of 

collisions governed by the resonant potential in which the term in 

the cube of the separation corresponds to a repulsive force.    Calcu- 

lations for the Lennard-Jones potential and for the resonant potential 

in which the cubic term corresponds to an attractive force are 

already in existence. 
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1. 

I.    BACKGROUND FOR THE STUDY OF INELASTIC 
MOLECULAR COLLISIONS 

1 - 1       Introduction 

Unpublished,   Sae MTGL.   p.   501. 

The kinetic theory of dilute gases, as developed by Boltzmann, 

Enskog, Chapman , and others, is valid only for the case of mon- 

atomic gases, since the potential energy of interaction between two 

molecules ia assumed to depend only on the distance of separation. 

The theory of transport phenomena in  gases made up cf molecules 

with internal degrees of freedom has recently been developed by 
2 3 Wang Chang and Uhlenbeck  ,  and by J.  de Boer   . 

Whereas the transport coefficients in the Enskog theory may be 

calculated from a knowledge of the angle of deflection in a bimolecu- 

lar collision,   the theory for polyatomic molecules requires knowledge 

of the full set of differential scattering cross sections corresponding 

to all possible quantum transitions of the internal degrees of freedom. 

The classic text on the subject is: S. Chapman and T. G. 
Cowling, The Mathematical Theory of Non Uniform Gases, 
Cambridge University Press,   1939. 
A more recent text of wider scope which gives up to date 
devebpment s   in the field and emphasizes the practical 
application of the theory is:   J.   O.   Hirschfelder,   C.   F.  Curtiss, 
and R. B.  Bird,  The Molecular Theory of Gases and Liquids, 
Wiley,   1954.    This reference will be quoted  frequently with 
page references,  and will be abbreviated   MTGL. 

C.  S.  Wang Chang and G.  C.  Uhlenbeck,   Univ.  of Michigan, 
publication CM-681 0951). 



Unfortunately,   it has not been possible to evaluate these differential 

scattering cross sections for a single case,  because of the complexity 

of the quantum mechanical description of a thermal collision between 

molecular systems.    The work reported in this thesis is directed to- 

ward an evaluation of these differential scattering cross sections by 

means of a semi-cla3sical description cf the collision process. 

The semi-classical formulation o;.' the collision problem de- 

pends on the assumption that the relative translational motion of the 

colliding molecules may be described by classical mechanics,   while 

the internal motions - electronic,   vibrational,   and rotational - are 

described by quantum mechanics.    This method,   sometimes called 

the method of impact parameters,   has frequently been applied to 

collision problems in which it was desired to determine only the total 

probability of an internal transition,   and in which the classical tra- 

jectories couid be approximated by straight lines along which the 

molecules moved at constant velocity. 

In this research we describe an extension of the semi-classical 

method which gives the detailed information about the trajectories, 

which,   together with the probability of internal transitions,   is neces- 

sary for evaluation of the differential scattering cross sections.    The 

extension depends on the assumption that the collision is nearly 

adiabatic,   so that the Schroedinger equation describing the internal 

motions may be solved for every intermolecular separation with that 

quantity appearing only as a parameter in the wave functions and 

energies of the solutions. 

The energy term so calculated,   depending on the intermolecular 

separation and internal quantum states,   is taken as the effective 

potential energy of interaction from which the classical trajectories 

may be calculated by integration of the equations of motion.    In 
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principle chis integration can always be carried out,  though in most 

cases it will be necessary to resort to numerical methods.    The 

"elastic" trajectories so calculated describe the motion of the mole- 

cules as long as the internal quantum state does not change.    They 

include the important   distortion effect of the intermolecular potential 

on the incoming and outgoing trajectories which has been ignored in 

most previous semi-classical calculations and which is ignored in 

the Born approximation of quantum mechanical scattering theory. 

Since the relative position of the colliding molecules is given 

precisely as a function of time by these elastic trajectories,  the 

method of time dependent perturbations may be used to calculate the 

probability that a quantum mechanical transition of internal coordin- 

ates occurs during an encounter.    When a transition does occur,   it is 

assumed to take place instantaneously,   so that the direction and vel- 

ocity of the molecular motions change abruptly in accordance with 

the classical conservation laws of energy and angular momentum. 

The trajectories after such a transition are segments of other elas- 

tic trajectories characteristic of the intermolecular potential deter- 

mined by the new internal quantum states,   and with boundary condi- 

tions determined from the conservation laws.    A given internal 

transition can thus lead to a whole family of inelastic trajectories, 

depending where along the trajectory the quantum transition takes 

place.    An approximate expression,   suggestion by the time dependent 

perturbation formulae,  is given which describes the relative proba- 

bility of transition along the trajectory.    This expression is modified 

in special cases by a set of "selection rules" resulting from the fact 

that for a given transition there are points along the trajectory at 

which the conservation laws cannot be satisfied. 

The semi- classical formulation of the collision problem has 

E-;veral advantages over the quantum mechanical scattering formula- 



tion:   It is not necessary to assume that the energy exchange in an 

inelastic collision is small,   so that,  for example,  the method would 

be expected to be applicable to a study of rotational energy transfer 

in collisions between hydrogen molecules.    The description of the 

relative translational motion of the molecules,  which leads to the 

greatest difficulties in the quantum mechanical approach through an 

infinite set of coupled radial    equations,   can in principle always be 

given in the semi-classical formulation by direct integration of the 

Newtonian equations of motion.    Finally,  the semi-classical formula- 

tion naturally falls into several distinct steps each with clear physical 

significance,  so that the significance and effects of various simplify- 

ing approximations are perhaps more readily seen than in the quantum 

mechanical method. 

Following a general presentation of the semi-classical theory 

of inelastic, collisions,  we give a detailed description of the theory 

for the case of the transfer of rotational energy in collisions between 

rigid,   linear molecules containing ideal electric dipoles.    This model 

is of particular interest in kinetic theory since the high degree of 

asymmetry in the inter molecular potential would seem to make appli- 

cation of the Easkog theory for spherical molecules inappropriate, 

even as a first approximation.    We include sample calculations of 

the effective inter molecular potential and probability of transition 

along the trajectory for typical cases.    These sample calculations 

are of value for indicating simplifications which might be made in an 

approximate evaluation of the differential scattering cross sections. 

The details of a sample inelastic trajectory indicate the importance 

of the inelastic transfer on the trajectory. 

The effective inter molecular potential arising from the adiaba- 

tic interaction of such rotating linear dipoles has been calculated for 

several typical cases from well known formulae due to F.   London 
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When the principle rotational quantum numbers of the colliding mole- 

cules differ by one - the case of resonance interaction - long range 

attractive and repulsive potentials arise.    With the help of the semi- 

classical theory it is shown why the Enskog theory actually is able 

to predict the coefficient of viscosity of polar molecules when a poten- 

tial energy function is used which includes the long range interactions. 

The dependence of the rotational transition probability on rela- 

tive velocity,   impact parameter,   and magnitude of the energy transfer 

is calculated for some sample cases.    Since the transition probability 

varies rapidly as these variables are changed,   it is seen that the 

important contributions to the cross sections would be expected to 

come from collisions characterized by rather narrow ranges of these 

variables. 

Calculations of the relative probability that transitions occur 

at various points along a trajectory indicate that the distance of closest 

approach of the molecules,   frequently taken as the most probable 

place for a transition,   may actually be a very unlikely place.    Instead, 

the regions where the effective inter molecular potential is changing 

most rapidly with time are indicated as the most likely points for a 

transition.    This fact,  too,  would be of great value for approximate 

calculations of the cross sections. 

The special case of the transition probability when the mole- 
I 

cules undergo a resonant transition is discussed.    As long as the 

molecules interact strongly enough to give an angle of deflection appre- 

, ciably different from zero,   it is shown that the classical analogue of 

the transition probability corresponds to a frequent exchange of the 

quantum of rotational energy during the collision.    Thus when the 

molecules finally separate after the encounter there is equal probabil- 

ity that either one of them will have the extra quantum of rotational 

energy. 
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This detailed consideration of rotational transitions in polar 

molecules is followed by a brief discussion of the form the theory 

would take in the consideration of vibrational and electronic transitions. 

1.2   Inelastic Collisions and the Kinetic Theory of Gases 

The kinetic theory of gases composed of particles which inter- 

act according to a spherically symmetric interaction potential is 

completely understood   .     That is,  the transport coefficients of a 
4 

monatomic gas      may be calculated to any degree of accuracy for 

an arbitrary iuLermolecular potential.    The derivation begins with 
5 

the Boltzmann equation     which specifies the singlet distribution of 

molecules in phase space.    Solutions of this equation due to Enskog 

Actually the theory may be used satisfactorily to predict the 
transport coefficients except thermal conductivity,  for 
molecules like   0     and   N_   which are nearly spherical. 

MTGL p.  444. 



and Grad lead,  finally,  to the formulae for calculation of the trans- 

port coefficients.    The dynamical information required for these 

calculations is simply the angle of deflection in a bimolecular colli- 

sion       A as a function of the collision parameter     b     and the 

relative velocity     g.    (See Fig.   2. 1). 

molecule   b 

Fig. 2. 1 A Typical Bimolecular Collision Pictured 
in a Coordinate System Translating with the Center of 
Mass of the System. 

The classical Boltzmann equation does not apply if the molecules 

have internal degrees of freedom.    By assuming that the internal 

degrees of freedom could be treated quantum mechanically while the 

translational motion was treated with classical mechanics.   Wang 

Chang and Uhlenbeck were able to modify the theory so that it would 

describe this more complicated situation.    In principle,   their method 

amounts to considering the gas as a mixture,   with each set of internal 

quantum states defining a separate species.    A separate Boltzmann 

equation gives the distribution function for each species,   and the 



equations are coupled in the sense that collisions tranpfer molecules 

from one species to the other.    A solution of these coupled equations, 

similar to Enskog's,  then leads to the expressions for the transport 

coefficients.    Wang Chang and Uhlenbeck give il.t formulae for the 

transport coefficients for the two limiting cases of very eaay and 

very difficult exchange of internal energy.    Whereas the theory for 

spherical molecules depended only on the angle of deflection   X(b,f), 

the theory for polyatomic molecules depends on the differential 
Kf 

scattering cross sections,   I,, {%it-.V) The differential 
*t 

cross section     jLi} (g,£,V7 for a collision process is defined 

as the fraction of the molecules with relative velocity g which 

are scattered from a uniform incident beam of flux one molecule 

per unit area per unit time,   into a unit solid angle in the direction 

X   U> while the internal quantum numbers specifying the 

system go from     i     and     j     to     k     and     1. 

Although we do not intend to describe either of these theories 

in any detail,   it will be instructive to compare typical results from 

the two theories in order to see the effect of the internal degrees of 

freedom.    For molecules with spherical potentials,  the first approx- 

imation to the reciprocal of the viscosity coefficient, is given by 

co a> 

lb   "T 

C\X 5 iftsm-kT UATi 
[fLi-o*cxfk,$    T*T --•'' e Z4tT $ h JL dp  (1.2-1) 

MTGL   p.   527 
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Here     QVl f, is the first approximation to the coefficient of 

viscosity,     H. is the reduced mass, $• the relative 

speed of the molecules,        b the collision parameter,   and   Mb.%) 

is the angle of deflection of the collision.    These quantities are best 

understood by reference to   Fi g 2.1   where a typical collision is 

pictured in a coordinate system translating with the center of mass. 

The important thing to notice about Eq.   1.2-1    is that it 

amounts,   essentially,   to a calculation of the quantity     9 L' " °c<"  ^°,%'] 

averaged over all collisions.    Since     2 "ft b J-b is the probability 

that a collision in a dilute gas near equilibrium will occur with 
3      -piL 

collision parameter between    b     and     b  +    db ,    and since    9  6- 3 r" 

is proportional to the probability that the relative velocity of the 

encounter will lie between     g     and     g   +   dg,      the averaging corres- 

ponds to an equilibrium distribution of all possible collisions.     The 

angle of deflection, A-(b, %) depends only on     b     and     g ,    so 

the average may be accomplished by a double integration over these 

two initial conditions. 

When the molecules possess internal degrees of freedom,   and 

when the energy of those degrees of freedom exchanges readily with 
7 

the tran-lational energy,    Wang Chang and -hlenbecfr      show that 

the expi ,«uion for the reciprocal of the coefficient of viscosity is 

given by ,. OD V ; T) 

± . j^L^uty \ <L—    L% iw-tfUy, 
i. j        '   S "   i I        J I 

Kf .       -M-ZZ 

Loc.   cifc.   n.   20 
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Here      to. is the internal energy of molecule     a     when it is in 

the    i'th   quantum state,   ^S.3     is the net change in internal energy, 

and    If7        is the azimuthal scattering angle which tells how far the 

final trajectory is bent out of the plane of the initial trajectories.    The 

significance of A is unchanged. 

Equation    1.2-2   differs from   Eq.   1.2-1    in two respects.      The 

property of the collision which is to be averaged is now 

Clearly this reduced to the expression in   Eq.   1.2-1   when the collision 

is elastic,   since then At,,   is zero.    In the second place,   we now label 

the encounters not with the initial conditions   b   and   g,    but with the 

initial velocity   g   and the final scattering angles    X and     Y  f 

together with the initial and final internal quantum states. This 

change in point of view complicates the averaging process and necessi- 

tates introduction of the differential scattering cross sections 

±.-L%tX,V)» The quantity    Xc/$- *> V) <**" * *% ** 

now plays a rule analogous to   3.1?h do , enabling us to make an aver- 

age over all possible encounters even though we are counting them with 

respect to labels characteristic of the final state    .    Evaluation of 

these cross sections represents the chief problem in the application 

of the kinetic theory of polyatomic molecules.    In the next section we 

describe the quantum mechanical significance and evaluation of 

the cro8T sections. 

This change of variables could be carried out in the classical 
formula by changing from an integration over     b     to one over 

X then    z7rh^-_   x* [_£#%&} y****/-- 

The quantity in brackets is just what is usually defined as the 
classical differential scattering cross section.    (See for 
example,   H.  Goldstein,   Classical Mechanics,  Addison Wessley, 
1951).    For the case of rigid spheres it is simply the geometric 
cross section      'Yd*'        where     d     is the radius of the sphere. 
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1.3   The Quantum Theory of Scattering 

A detailed discussion of the quantum theory of scattering would 

be out of place here,   but we shall outline enough of the theory to 

show the quantum mechanical significance of the cross section,   and 

to indicate the chief approximate methods which have been applied 

to studies of molecular collisions.    The approximate methods will 

be of use for purposes of comparison with their counterpart? in 

the semi-classical theory to be presented in Chapters H and III. 

Suppose we consider isolated molecules     a     and    b,   vAiose 

internal Hamiltonians are     Ho-      and      Hb       and whose wave 

functions      /X«.      and   M-t,       and energy levels       Ea.        and      Ei 

Most of this section is based on material in W    F.   Mott 
and H.  S.  W.  Massey,    The Theory of Atomic Collisions 
Oxford Press,   seconded.   (1949). 

For recent important developments in the fundamental 
theory of scattering, see : 

D,   R.  Bates,  A. Fundaminsky,   H.   S.   W.   Massey,   and 
J.  W.   Leech,  Phil.  Trans.  Roy.  Soc.  A-860,    93,   (1950). 

Breit,      Rev.  Mod.  Phys.   23^  238 (1951) 

S. Altschuler    Pnys.  Rev.  89..  1278 (1953); 95,   546(1954) 

C.   F.   Curtiss,   J.O.   Hirschfelder and F.   T.  Adler 
J,  Chem.  Phys.   18,  1638(1950) 

C.  F.Curtiss,  J.  Chem.  Phys.   21,   1199(1953) 
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are obtained by solutions of the equations 

[ Ha(6)     Ei j Utiti-   O 
(1.3-1) 

Here     £«-       and      Xb      denote all of the coordinates necessary to 

specify the configurations of molecules     a     and    b     relative to 

their mass centers. 

If     R  ,       is the position of molecule     b     relative to molecule 

a,      g    the relative velocity,       M.        the reduced mass,   and 

9?( Sat>, J^t*)      the potential energy of interaction,   then the wave 

equation of the colliding system in relative coordinates is 

rg^   -to   -Hbfc»MiHf ^+^ '-^P^g^,^ (1.3-2, 

rr O 

The problem is to solve Eq.   1.3-2   with boundary conditions cor- 

responding to a molecular collision.    Let us look for the solution 

which describes the scattering of a uniform beam of molecules in 

state     i    from a molecule in state     j.      T?.king the incident beam 

along the positive     z     axis,    and neglecting symmetry effects,   the 

solution may be expanded in the complete set of functions 

JAtL.(L°-) Mf[L*) (including the continuum,   for ionized states). 

Thus 

$<W*,&)     =Z   F,7<f^^aCt»^) (U3"3) 

10.       W.F.  Mott and H.  S.W.  Massey,   3oc,  cit.  p.   140. 
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To satisfy the boundary conditions,   we must have for large   I fcLab| 

(rf'(x.ip)     t Kiilbtl 

^ (1.3-4) 
u 

hi 
and 

£ JJIWMIUP)      *"     /&»' 

F; 
.AH- 

Rat,! 

Here 

*-*i       v -ft 
^   -- ^[i/c*v*£"*^rt<7 

It may be shown that 11 

«•/ 

A*'"J    " '^7 i^^-^ (1-3-5) 

.i/rw 
The radial functions       ft •  (Ra.bJ 

coupled equations 

are given by the set of 

(^ * KL) F^M « f I <# *0 &»,^ "• 3"6) 
A,A- 

where 

& W, i/ryj 

11.      ibid.  p.   137 
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Obtaining solutions to this infinite set of coupled radial 

equations constitutes the chief problem of the quantum mechanical 
12 

method      As  Zener has pointed out     ,     it is the difficulty of handling 

the radial equations in the quantum mechanical method that suggests 

development of a serrn-ciassical theory for investigating low velocity 

molecular collisions.    The translational motion of molecules in 

thermal collisions is very nearly classical,   so that one might hope 

for a considerable simplification when the problem is reformulated 

in such a way as to utilize Newtonian mechanics for a description 

of the relative molecular motion. 

We shall now list three approximate solutions of the scattering 

equations which are of importance in the study of molecular collisions., 

One can,   to some extent,   attach a physical significance to the math- 

ematical approximations made in each case, 

a)   The Born Approximation. 

If on the right hand side of Eq.   1. 3-6   we take 

r c j  ('<?»J   - u 

it Kij ' E?b7 

i, /Vn ?*   i-, j 

(1.3-7) 

where is a unit vector in the direction of the incident beam 

and      n     is a unit vector in the direction of       f—i */'        then it may 

be shown 13 that 

12. C.   Zener,   Phys.   Rev.   37,     557   (19 31) 

13. W.   F.   Mott,   and W,  S.   W.   Massey,   loc.   cit.  p.   143. 
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f i[A'j01*   "K»< /22] »#*b 

(1.3-8) 

To this approximation,  the distortion of the incoming and 

outgoing waves by the interaction potential is minimized,   since 

they are taken to be plane waves,    in a semi-classical treatment 

this would correspond to taking these trajectories as straight lines 

along which thr molecules travelled at constant velocities character- 

istic of the initial and final translational energy.    Thus the method 

is best suited to a study of high energy collisions where the trans- 

lational motion is only slightly perturbed by the collision.  Because 
14 of the relative simplicity of the method,   however,    Kerner       has 

used it for a study of both vibrational and rotational energy transfer 

in thermal molecular collisions. 

b)   Distorted waves. 

If we make the less drastic assumption that the non diagonal 

matrix elements on the right hand side of Eq. 1. 3-6 are so small 

that we may neglect all terms except the diagonal ones: 

r— k/YK 

and the off diagonal ones connected with the incident state: 

CD   , . k    (Rab) 

  

14.       E-  H.  Kernel,   Phys.  Rev.    92,    899 (1953   and   91 , 
1174,    (1953). 
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then it may be shown       that 

16. 

TAh*.y = K* Sf /1 Fl-V®"* i ,*<&*) £<**/ ^ 
(1.3-9) 

Here ("^ i (Ro-b) is the solution of 

L V - fei" - »-& £M>,J F^ = o (1. 3-10) 

and the are solutions of 

[v" * K.; <£K',*/JS^/«       ~° 
(1.3-11) 

In this approximation some of the distortion of the incident and 

outgoing waves by the scattering field is taken into account.    Instead 

of using plane waves for the incident and scattered waves,  we now 

15.       W. F.Mott andH.  S.W.  Massey,   loc.  cit.    p.  146. 
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have waves distorted by the diagonal elements of the interaction 

potential.    This is the method most frequently used for the investi- 
« f 1 1 114    • 16"22 gation of molecular collisions. 

c) Perturbed stationary states. 

In this method the original derivation ia varied slightly.    It ir 

assumed that the encounter is nearly adiabatic,   and that for every 

inter molecular distance   Jl        the equation 

j^Hdk)  * Hb(W   *• $t&,&,&*)   -Eig.*-.)] ^(J>'r°'5ab)  ~C (1.3-12) 

has been solved.      The       ^/   ((<*•, £s> I S^b) form a complete 

set so that the exact solution may be expanded in terms of these 

functions instead of the products     JJ- a. (&-J   JJ.t>(&) 

Thus the solution is expanded in the form 

$<fr.IV.BM)   = ZF-^^   Wfr^lM (i 3i3) 

The derivation is carried through with the same approximations 

as for the method of distorted waves.    If in the final result,  the 

16. C.   Zener,  Phys.  Rev.    37,    556 (1931). 

17. R.  S.  Roy and M.  E.  Rose,  Proc.  Roy Soc.  A149,   511 (1935) 

18. R.  N.  Schwartz,   Z.  I.  Slawsky,   and K.  F.  Hersfeld, 
J.  Chem.  Phys.    20,    1591(1952). 

19. K.  Takayanagi,  Prog.  Theoret. Phys.    8,    111 (1952). 

20. J.  C.  Beckerle,  J.  Chem.  Phys.    2j_,   2034(1953). 

21. R.  N.  Schwartz and K.  F.  Herzfeld,  J.  Chem.  Phys.   22, 
767   (1954). 

22. J.  C.  Broot ,   J.  Chem.  Phys.    22,   1189   (195*). 
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4^    (l*-1 & I ^b) are replaced by their first order pertur- 

bation approximation in terms of the       Ma,<£2-) and      AbU-b) 
23 there is obtained 

X 
r • Ki 

l  ~ TE^TTcj—_y £,x r. **•*.#•* «     (1 3.14) 

From this approximate expression,   it may be seen that the 

result is similar to the distorted wave approximation,   with full 

account taken of the distortion effect on the incoming and outgoing 

trajectories.    Although the method appears well suited to the study 

of molecular collisions,   it is difficult to apply since it requires 

a reasonably exact knowledge of the adiabatic functions.    The exci- 

tation of     He     atoms by protons,   and the electron capture from 
24 He       by protons were studied some years ago by this method. 

Interest in the method has recently been revived and semi-classical 

formulae for the total transition probability have been discussed 
25 

in terms of the method by Bates et al. It will become evident 

in Chapter II   that our semi-classical description of the total colli- 

sion process bears a close resemblance to this method. 

23. W.   F.   Mott and H.   S.   W.   Massey,   loc.   cit.   p.   156. 

24. Massey and Smith,  Proc.  Roy.   Soc.    A 142,    142(1933) 

25. D.  R.  Bates,   H.  S.   W.   Massey,   and A.   L.  Stewart, 
Proc.  Roy.  Soc,    A 216S    437(1953). 
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1.4     History of the Semi-Classical Method for Studying 
 Collision Problems.  

Shortly after the introduction of quantum mechanical methods 

for studying inelastic collision phenomena,   workers recognized the 

possibility of combining a classical description of the translationai 

motion with a quantum description of the internal motions.    In all 

of these studies the aim was to calculate the total probability of some 

i change in the internal state,   such as electronic excitation of ionization. 

The details of the trajectories in such studies were of secondary im- 

portance,   in that the classical trajectory was used only to give the 

explicit time dependence of an interaction potential.    This quantity 

is not sensitive to slight variations in the curvature of an orbit,   so 

that in most cases straight line trajectories were found to be adequate 

for the problems considered.    For application to the kinetic theory of 

gases,   we require much more detailed and more accurate information 

about the shape of the trajectories.    Since our theory is based on 

these earlier works,   we 3hall review briefly some of the high points 

in the development of the semi-classical method. 
26 

Faxen and Holtzmark        were perhaps the first to emphasize 

the fact that the semi-classical method depended on a quantum mechan- 

ical separation of internal coordinates from the coordinates of relative 

motion.    Any use of the semi-classical method must begin with a 
27 justification of this separation for the particular problem.       Gaunt 

made one of the iirst calculations of a collision problem by the semi- 

classical method when he considered the scattering of alpha particles. 
28 His results were quite poor,  but it was later shown by Mott        that 

26. Faxen and Holtzmark,   Zeit.    f.  Physik 45,     311 (1927). 

27. Gaunt,  Proc.  Camb.  Phil. Soc,   23,    732(1927). 

28. N.   F.   Mott,  Proc.   Camb.  Phil.   Soc.    27,     553(1931). 
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the bad results were due to the approximation of some integrals rather 

than any inadequacy of the method.    In the same paper,   Mott put the 

semi-classical pr -cedure on more firm ground by demonstrating its 

relation to the Born approximation of quantum mechanical scattering 

theory,  and it wats he who called it the method of impact parameters. 
29 Frame        calculated the probability of atomic excitation by fast alpha 

particles,  using both the Born approximation and the semi-classical 

method.    The agreement was good. 

The first application of the method to inelastic molecular colli- 
30 sions was made by Zener        when he considered vibrational excitation 

produced by head on molecular collisions,   and showed that the method 

was considerably more simple than the equivalent treatment by the 
•   31 method of distorted waves.    Recently Widom and Bauer       have revived 

interest in the method by extending Zener'8 treatment to include 

collisions in which the impact parameter differs from zero.    Bates' 

and coworkers have stressed the importance of the distortion of 

trajectories in slow collisions and have extended the method in this 

direction in connection with their work on the quantum mechanical 

method of perturbed stationary states. 

25 

29. J.  W.  Frame,  Proc.  Camb.  Phil.  Soc.    27,   511(1931) 

30. C.  Zener,  Phys.  Rev.   3B,    277   (1931) 

31. B.  Widom and S.  H. Bauer,  J.  Chem.  Phys.    21,  1670 (1953) 
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II.    THE SEMI-CLASSICAL DESCRIPTION 
OF A MOLECULAR COLLISION 

In this chapter we present the semi-classical description of a 

general molecular collision.    In section   2. 1   we review the starting 

equations and present the basic assumptions of the method.    Next we 

apply the equations to a description of collisions in which no internal 

transition takes place.    In section 2. 2 we extend the method to include 

a description of the internal wave functions and trajectories when a 

transition of internal coordinates takes place during the encounter. 

2.1      Starting   Equations and Elastic Encounters 

Consider a system of two colliding molecules,    "a"   and   "b", 

with masses   m     and   ITL .    The motion of the system may be des- 

cribed in terms of that of the center of mass of the complete system, 

the relative motion of the centers of mass of the two bodies     -»»d the 

motion of the individual molecules relative to their own centers of 

mass.    Of the*e,  the motion of the center of mass of the entire system 

is irrelevant and can always be separated out and the Schrcedinger 

equation describing the two molecule system    may be written in 

form   . 

N.   F.   Mott and II.  S.  W-   Massey,   loc.  cit.  p.   139. 
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[H,ia ^HJM -£ v£, + dW,a^ - ErJ@tt.fi.,s^ - °        (Z-Ul> 

Here   r and   r ,      denote all of the coordirAates necessary to —a —b 
specify the configurations   of molecules     a     and    b     relative to 

their own mass centers,    and     H       and     H.      are the Hamiltonians a b 
of molecules     a    and    b     when they are isolated in space.     R     . 

— ab 

gives the orientation of the center of mass of molecule    b   relative 

to that of molecule   a,    viewed in a coordinate system translating 

with the center of mass of the whole system,  and £     ,     is the total 
' rel 

energy of the system relative to the center of mass.      The quantity 

<^R/ra   r    p<b\ is the potential energy of interaction of 

the molecules,   and the reduced mass of the system       /*- 

is given by 

srria. + smt 

The internal Hamiltonians   H       and    H,      may be used to define 
a b '. 

a set of eigenfunctions M*. ,   MJ»>       and energies     t«<   ,   Cb 

describing the motions of the isolated molecules 

Ho. (r*j [>-<&) -EL] -o 

HyWl^ktM) - E2 j   =° (2.1-2) 

The fact that only the relative      separation of the two molecules 

appears in Eq.   2.2-1      indi cates that the relative motion of the mole- 
2 

cules may be viewed in terms of an equivalent one particle problem  . 

MTGL. p.  49- 
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The information describing the motion of the two molecules in the cen- 

ter of mass coordinate system may be obtained by imagining that one 

molecule is fixed at the origin and that the other move* relative to it 

•with the same inter molecular potential as before,  providing only that 

the moving molecule is assumed to have a mass equal to the reduced 

mass of the two molecule system.    The description of the internal mo- 

tions of the two molecules is not altered by this changed point of view, 

since the relative coordinate system translates uniformly with the 

center of mass,  but does not rotate with respect to axes fixed in space. 

Because of the conceptual simplicity of the one particle description of 

the encounter,   we shall use it extensively in the rest of the discussion. 

For the semi-classical solution of Eq.   2. 1-1    we assume that 
3  4 a Born - Oppenheimer type separation   '       of the internal coordinates 

from the coordinates of relative motion may be used.    That is,  the 

solutions of Eq.   2. 1-1    are assumed to be expressable as a product 

where       Lj4^jt (£-,£, &>») and        X^'C £ab)       are given by the equations 

[_H4Li.) +hblL.)   - # ( fi., r„, Rab)   - E£< £*»jj  \|C (&-.&. &>)   ~ C (2. 1 -3) 

and 

The wave function      Y£JE*'**>JH** not to be confused with the azimuthai 

angle of scattering    \\). 

Equation 2. 1-3 gives the wave functions and energies of the 

hypothetical situation in which the relative orientation of the 

3. M.   Born and J.   R.   Oppenheimer,   Ann.  Phys.   84,   457(1927) 

4. Derivations of the separation and ways of determining the 
error are further discussed in H.  Pelzer and E.   P.   Wigner, 
Z.   Physik.   Chem.   B   15 ,   445(1932)    and MTGL   p.   925. 
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molecules is held fixed.     The wave functions      yCyjc ' fc>&lB&>) 

and energies    r\    (Ra.*)        of this solution thus depend only parame- 

trically on the intermolecular orientation      rUtfa The quantum 

numbers     i     and     j     represent all necessary quantum numbers for 

specifying the internal state,    A representation is chosen such that 

\U; becomes a simple product of the separate molecule wave 

functions as     R is increased to infinity.    Thus 

"^   , ^3> > r°' M     =   ^ (-> Jt-lU*) (2.1-5) 
.   .   I_. A 

For this reason we refer to the      ^irJt a8 tne "adiabatic 

clamped"   solutions of the internal motions.    The energies 

define a set of potential energy surfaces,   one for each set of quantum 

numbers,   which govern the relative motion of the moecules.  Equation 

2. 1-4   then gives the quantum mechanical description of the relative 

motion of the molecules on such a potential energy surface.    It is 

convenient to define two new quantities       (P(B.uh) and      i-tu^^a 

such that ( .j 

r-i-* rr       - P'V; (2.1-6) 

l-i 
This is reasonable and useful aince now     T  (%?*) vanishes 

as    j Ribf goes to infinity and is indeed the effective intermolecular 

potention,   and       fc«u- is the relative translational kinetic energy 

of the colliding system when the encounter begins. 

E •   - ± -i r 
With this notation Eq.   2. 1-4 becomes 

7) 
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The semi-classical formulation of the problem is completed by 

assuming that Eq.   7. 1-7   for the relative motion of the molecules 

may be solved in the classical limit. 

Now we are in a position to give the semi-classical description 

of the elastic collision between molecules which start out in the 

states     u      and     ur^    . The trajectory is given by the motion of 

a particle of mass     fA moving in the potential field     y* (§?t) 

with initial conditions of energy and angular momentum given by the 

initial relative velocity     g     and collision parameter    b     .    The 

wave functions describing the internal state of the molecules is given 

by the adiabatic clamped functions   iVj^jt ( *"-> ^ ' %£&)   evaluated along 

the trajectory. 

2. 2    Inelastic Encounters^ 

An inelastic encounter is described by assuming that a transition 

of the internal quantum state,   say 

takes place at some point along the trajectory.    The subsequent rela- 

tive motion is described by motion on the new potential energy surface 

^P   {&&•*>)       with boundary conditions determined by application of 

the classical conservation laws of energy and angular momentum at 

Kallman and London,   Z.  Phys.   Chem.  B2  ,   207 (1929) give a 
thorough discussion of the many types of non adiabatic molecular 
collisions. 
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the point of transition.    In part     a.    of this section the probability of 

transition is discussed in terms of time dependent perturbation theory, 

and an approximate expression is presented for determining the rela- 

tive probability that the transition took place at various points along 

the trajectory.    In part    _b_    the use of the classical conservation laws 

for determining the new trajectory is discussed. 

a)        The internal transition. 

The classical elastic trajectories give the inter molecular 

separation     R as an explicit function of time,   so that the method 
ab 6 

of time dependent   perturbations      is indicated for an investigation of 

the probability of transition.    One slight modification of the theory is 

necessary for our purposes,   however.    Ordinarily one takes for 

unperturbed wave functions the simple product functions corresponding 
6 

to the non interacting system.    Then one finds      that the probability 

that a system which at time     t   = -CO    was in the pure initial state 

whose quantum numbers are specified by     i     and    j     is found in the 

final state specified by     k     and     1     at time     t ,      is given by 
t 

( -H^: • v- u}*-(MiMi, s.j^y M. 
(2.2-1) 

i k        „i 1 Here     E ,     E    ,      E,   ,      and     E,     are the internal energies of the 
a a b b ° 

isolated molecules as defined in Eq.    2. 1-2,   and the matrix element 

in the inter grand is given by 

6.        P.  A.   M. Dirac,   Froc.  Roy.  Soc.    A112 ,   661(1926) and 
A114    ,     243,   (1927) 
A derivation of the method is included in most elementary 
quantum mechanics texts,   see for example,   L.  I.  Schiff, 
Quantum Mechanics,    McGraw Hill,   1949,  p.   189. 
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{MIM.1 I S^wiuLuj)  -- j [^ >"t icfclW.ga^/ti ^* d* ^3 

We suppose that      ~t -O is taken at the distance of closest approach 

of the two molecules. 

In our formulation of the collision problem in Sec.   2. 1 we 

assumed that the encounters were nearly adiabatic,   so that the adia- 

batic functions      ^K»* ^&'J!>» &**>/ obtained by solution of Eq.   2. 1-3 

provide a more accurate description of the internal coordinates during 

the encounter than do the     u u   .        Taking these adiabatic functions 

(which depend on time through   R  , )     as a continuously changing set 

of unperturbed functions,   it is shown in appendix I     that the transition 

probability is given by 

Here the superscript   (1)   on the transition probability indicates 

that the adiabatic wave functions and energies are taken for the    unper- 
l 

turbed set.    Note that now the time derivative of the interaction poten- 

tial appears explicitly,   and that the energies of the unperturbed states 

vary with the time through   R  , . 
—ah 

The most interesting feature of this form of the transition 

probability is the appearance of the time rate of change of the 

potential,    rather than the potential itself,   as in the expression for 

P^j In the limit of an infinitely slow encounter we expect 

no transitions at all,  for although the wave functions are distorted by 

the interaction potential during such an encounter,   thev return adia- 

baticaily to their initial state as the interaction decreases. 
i- 
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That this is indeed the case may be seen by writing Eq. 2. 2-2 

as a function of the arc length along the trajectory., s, instead of as 

a function of the time.    Then 

1! *<t 

-l1W/s;'-: 

AE'h'J (v^\W^)ds'\ (2. 2-2b) 

Now,   as the relative velocity vanishes,   a small change in     s     corres- 

ponds to a large change in the time     t(s)     so that the exponential term 

oscillates more and more rapidly as the relative velocity is decreased. 

Thus successive contributions of the integrand tend to cancel,   and it 

may be seen at least qualitatively that as the relative velocity vanishes, 

the integral goes to zero. 

Thus the adiabatic distortion of the wave functions has been 

separated out,   and we are looking only for transitions among such 

distorted wave functions,   which are caused by the relative velocity. 

This may be visualized as transitions among the distorted potential 

energy surfaces of the system,   as in Fig.   2.2-1. 

EL +Ei 

t-- « t-c Tiwe rim 

Fig.   2. 2-1   A quantum transition of internal coordinates 
viewed as a jump between potential energy surfaces. 
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Here we picture schematically several potential energy surfaces of 

the system during an encounter as a function of time.    The function 
J'l P.. ttl gives the probability that a system which started out 

on the     ij     energy surface will at time     t     have jumped across to 
7 

the     kl     energy surface.    Bohm points out that this formulation 

of the time dependent perturbation in terms of adiabatic functions 

allows one to consider systems in which the perturbation potential is 

large,   as long as the rate of change of the potential is small. 

In most collision   problems,   one asks about the total probability 

that a transition has taken place due to a perturbation during the 

whole course of the collision; that is,   one is interested in the value 
m 

of Kj^Ki ^e'   however,   shall be  interested in the addi- 

tional question as to the relative probability that the transition took 

place in given short time intervals during the time the perturbation 

was acting.    From Eq.    2. 2-2     we might say that the probability 

that the transition took place between time     t     and     t + c t is 

just 

A R •<*> 
J* 

but in quantum mechanics we are limited in the kind of questions we 
g 

may ask by the uncertainty principle.    In one form     this says that 

the product of the uncertainty in a measurement of the energy of a 

system, 5"E/    and the uncertainty in the time at which the measure- 

ment was made,       0 ~t , are related by the expression 

7. D.  Bohm,   Quantum Thecry,  Prentice-Hall,   1951..   p.   496. 

8. L.  I.   Schiff,   loc.   cit.  p.   7. 

•? 
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In our transition probability we are asking about two states of the 

system differing in energy by an amount 

hence we cannot expect the expression 

du T 

to give meaningful results for times    O £ less than about 

O 

In Sec,   3.2   where we calculate sample curves of      >£^KJ and 

P.(# for the special case of rigid,   linear molecules with 

ideal electric dipoles,   we find that this is indeed the case,  and that 

these curves oscillate with a period equal to j=% while going 

from zero at i--0>    to the final   value   Pt<»> at     t - <x>. Such 

oscillations make    ^     " negative at some points during the 

encounter,  which interpreted naively would indicate a negative proba- 

bility of transition in those regions. 

Since we are allowed,   quantum mechanically speaking,   to ask 

about the probability that a transition has taken place in a time interval 

corresponding to   one such, complete oscillation,   one might expect to 

construct a classical analogue of the transition probability by drawing 

a smooth curve through points on the oscillating curve separated by 

times 

s* — M      c'1 

t l*VV* 
I i:~* 

This was attempted,  but for the sample curves calculated, the 
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procedure was not satisfactory in that the resulting curve for the 

integrated transition probability still oscillated and passed through a 

maximum in the vicinity of the distance of closest approach.   ( It is 

difficult to interpret a decrease in the integrated probability after it 

has passed through a maximum) In any case we were unable to 

obtain satisfactory criteria for constructing a classically satisfactory 
D'" approximation 10 the curve    i   Lt) by considerations of this 

soi-t. 

As a next approach,   one might try to obtain a series expansion 

of the transition probability or of its derivative.    The transition 

probability is approximately of the form 

Pt*) 
St    - i, fa i 
j e    ft*)**,' 

-CD 

Differentiating with respect to     y , this may be written 

dfa L..2 ft, fe-c3 /V ——      -      Til)   *   At (  C      Jw 

} 

(2. 2-3) 

(2.2-4) 

Integrating by parts repeatedly and noting that all derivatives of the 

function     f(^ )     vanish as      <$ -> <*> we obtain 

T 

A3 
=    A 4ts; gj '<3> j (2.2-5) 

since     f(u  )     for a dipole-dipole interaction is of the form 

each of the products of this series is an odd function of      y r a 

that approximating P<%)       by any finite number of terms in the 

series gives the unsatisfactory result that 

so 
f 

I 
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=:   C 

In the absence of a satisfactory derivation of the classical ana. 
JUI 

logue of       rn+Kt 

serve as a satisfactory approximation 

we suggest that the following function may 
9 

\.    tfi)     - 

«**/,, j"}vli5 
Cl*" W **; 15*1 

f(^m,v4' ^7T 

(2. 2-6) 

This function has the following desirable properties: 

1. It is zero at   t   =    -CO and equal to  r<»       at   t  = • co 

in agreement with the quantum mechanical formula. 

2. It is monotonic increasing over the entire range,   corresponding 

to the classical picture that if transitions are rare,   there is negligible 

chance of multiple or reverse transitions,   so that there ought to be a 

steadily increasing probability of finding the system in the final 

state. 

3. If the time rate of change of the interaction potential is either 

symmetric or antisymmetric about   t = 0,  Eq.   2. 2-6   gives 

Since elastic trajectories are symmetric in shape about the distance 

of closest approach, 

cLt cttr (2.2-7) 

9.     The classical analogue of the transition probability might profita- 
bly be investigated from the point of view of Wigner's distribution 
function formulation of quantum statistical mechanics,  but no 
work has been done in this direction.    This method is described 
in E.P.Wigner,   Phvs.   Rev.   40,   479 (1932) and in   J.   H.   Irving 
and R.  W.    Zwanzig,   J.  Chem.  Phys.   19,   1173,   (1951). 
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and Eq.   2. 2-6   says that there is equal probability of the transition 

occurring on the   approaching and the receding parts of a trajectory. 

This is justified as a first approximation by noting that due to the 
til ~ , T 

absolute square operation,     K^tt i* unchanged if    -g^r 

is replaced by    - -JJ.   • That is, to a first approximation,  the 

quantum mechanics does not care about the actual sign of this quan- 

tity,  and we are led to expect equivalent behavior on the two halves 

of a symmetric trajectory 

4.  The transition probability increases most rapidly in regions 

where the perturbation potential is changing most rapidly in time. 

This is consistent with the adiabatic theorem,   and the quadratic 

dependence on        -r-z is suggested by the absolute square 

operation in   f &J  . 
Of)K 

5.    The factor       2J j in the integrand makes   Pit) 

agree with the general form of     f"^*4*£ when they are considered 

as functions of the intermolecular distance     R     rather than the 

time     .      That is,    if      Pit) is expressed as an integral 

over     R ,  it takes the form 

10. The other function one might guess, 

is unsatisfactory from this point of view,   since it gives 

11. Omission of the factor  [j^j in the definition of   Rtti << in 
Eq.  2. 2-7,  thus giving qualitative agreement with the form of 
$*H4** expressed as an integral over the time would have re- 
sulted in an anomcly when PuiuP was considered as an integral 
over   R.      That is,   we would have obtained 

Since at the distance of closest approach    ;jf ~ °       this would 
imply a vanishing probability that the transition took place be- 
tween   R   and   R+  dR   about the distance of closest approeich. 
The quantum mechanical formula,  Eq.   2. 2-8 ,  indicates that 
this is actually a very likely region for the transition. 
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(2.2-8) 

.(JUac 
and   °-^K<^     the form 

P   (R) (too) 
(2.2-9) 

Here the upper limit of the integrations indicates an integration along 

the trajectory; since in general R passes through a minimum, then 

increases to   Cf ,   the integral will have two branches when the upper 

limit corresponds to a point on the trajectory beyond the distance of 

closest approach. 

In section 3. 3 sample calculations of      \, Wj and JtLicfHrtJ 

are plotted for the special case of rigid,   linear polar molecules,   and 

are compared with the functions    Y^.^t am*      'a+xe   • 

This completes the semi-classical description of the internal 

transition on an inelastic trajectory.    The expression 

gives the probability that the transition takes place between time     t 

and     t + dt     during the encounter,   and 

, dm 
09    A . !-,**** 

1   C-) ->/<".<> n 
gives the total probability that the transition takes place during 

the encounter. 

I 
b)     The inelastic trajectory. 

If we suppose that at some point along the trajectory the internal 

wave function changes from  lU-^C &iJ5j R*±) to    ty ^ ( &•/&' ,^b> , 

then the relative motion of the molecules in this region reflects the 

sudden shift from the potential energy surface r    (3,°^) to the 
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1 

K.L 
new surface        Y  6f?<U»)  • The boundary conditions of energy 

and angular momentum necessary for a precise description of the 

motion in the new potential field ip (/&&) are deduced from 

the classical conservation laws of energy and angular momentum. 

Let us denote the equivalent one particle trajectory before the 
ii kl transition by     T        and that after the transition by     T    . The 

,kl 
quantities necessary for specifying the initial conditions of     T 

may be defined with reference to Fig.   2. 2-2   where we picture the 

details of the trajectory at the moment of inelastic transfer. 

Fig.   2. 2-2   Details of a trajectory at the moment of inelastic transfer 
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kl 
Since we are required simply to determine the orientation of     T 

relative to     T   »  the coordinate system we use at this point is quite 

arbitrary,  as long as it is defined in terms of the trajectory before 

the transition,   T1J. 

Suppose the transition takes place at point    B   where |£?t>l -   Rat. 
ii kl 

Let AB and   BC   be tangents to   T J   and   T at   R  L,      and let 
ab 

AB    lie in the    xy   plane,   parallel to the    x    axis.    Let the perpendi- 

cular distances of   AB    and   BC     from the origin be      H   (Rat) and 

p   (/tit)          Note that      f:l            is   an instantaneous analogue of the 

collision parameter   b,   in that for large  values    of   R     ,     (3 — b . 
—ab      i 

Let the origin and line   BC    determine the   plane     F     which inter- 

sects the     xy     plane along   OB    =   R  . ,   and makes an angle     f 

with the   xy   plane.    Finally,   let   Y)     be the angie which   R*,     makes 

with the   x   axis.    In case the effective potentials ¥(£?>>} are 

spherically symmetric,   the trajectory     T will lie entirely in the 
kl 

xy   plane and     T will lie entirely in the   F   plane.    In this case 

it would be convenient to fix the coordinate system by making the   x 

axis parallel to the initial asymptote of   T ". 
kl 

The initial conditions of the new trajectory   T        may now be 

specified by three quantities: y giving the inclination of the 

F   plane,        Q   (Ruj      locating the trajectory in the     F   plane,   and 

^F(fo.i)        giving the new relative velocity.    Thest; three quantities 

may be determined by application of the classical conservation laws 
I 

of energy and angular momentum applied at the point of transition. 
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1.   The relative velocity after the transition: "V"(fia£J 

In terms of quantities already defined,  the conservation of energy 

relative to the center of mass of the whole system may be written 

(2.2-10) 

From Eq      2. 1-6 

so the first three terms in the energy expression represent the total 

internal energy of the adiabatic clamped system.    The last term 

containing the relative velocity     v   (R*, ) ,   gives the kinetic energy 

relative xo the moving center of mass of the two molecule system. 

Eq.   2.2-10may be solved immediately for the relative velocity 

after the transition: 

'A- 
(2. 2-11) vlLi) z & [st- &? * Ei - EJ * ?l*k) • #*0 <in ^ 

In case this velocity is imaginary,   we conclude that the transition is 

energetically forbidden,   so this result constitutes a sort of "selection" 

on the transition. 

«t. 
2.  Orientation of the trajectory in plane F:       /   (fiat,) 

The conservation of angular momentum may be expressed as 

L -- Km +ii^) * j£cw *£+& * J£AM        
(2-2-12) 
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Here   J^    .. h     J_A        an^    Jt       are *ne internal angular momenta 
/  • 

associated with molecules   a   and   b   before and after the transition, 

and      JH-frJffl*^ an<i     Jr^"^        are ^e anguiar momenta associated 

with the relative translationai motion of the molecules.    For example 

Equation    2. 2-12   may be used to determine 

follows;        By definition, 

(2. 2-13) 

(3 C Rat)        as 

'<*     - - «* 
liC(Si)/  -   iKfRix^Vj-/*/3^^^      U..-UI 

So if we assume for the moment that we are able to solve   Eq.   2. 2-12 

for    sCtuJzji   ) then we have,   simply, 

/3 C5?fJ   ^ , - Kt (2.2-15) 

The   significance of this result as far as determining the orientation 

of BC   in plane   F   maybe seen by reference to   Fig.   2.2-3   where 

we picture the situation in plane   F. 

Plane   Y 

Fig.   2.2-3   The trajectory in the new 
plane immediately after the transition. 
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,«t 
From the definition of /"'(fist,', BC is to be constructed so as to be 

tangent to the circle of radius      /-•     ( Efl-b) centered at the origin 

and lying in plane F.    From Fig.   2. 2-3 it is apparent that if the point 

B lies outside the circle there are two such possible tangents,  both 

of which give the correct translational angular momentum.    In case 

I      (•<!») is greater than R* , , so that point B lies inside the 

circle,   no satisfactory trajectory can be constructed at point B 

which will be consistent with the conservation of   angular momentum. 

This constitutes a second Selection rule on the transition at point   B. 

When the transition is    allowed,  the choice between the two 

possible paths is really unique.    This may be argued as follows: 

Let us suppose that the change in angular momentum in the transition 

specified by   ij  -> kl   approaches zero. 

In the limit of no transition   a diagram like Fig.   2. 2-2 may still 

be conatructed with the two possible trajectories,  but now the equa- 

tions of motion clearly require that the particle   continue    on the 

smooth trajectory rather than taking the abrupt change in direction 

which would also be consistent with the angular momentum of the 

system.    That is,   an approaching particle cannot suddenly jump to a 

receding trajectory.    The finite transition may be viewed as a series 

of infinitesimal transitions resulting in a gradual distortion of the 

trajectory,   during which the distinction between approaching and re- 

ceding paths remains clear at every step.    For the finite transition 
ij _-.*• 

this simply implies that if   T      at   jKa.E     is an approaching path,  then 
kl 

T      is to be chosen as the approaching path,   ana similarly for 

receding paths. 

I 



40. 

3.  Orientation of the plane   F:      J 

By the definition of the angular momentum,   the plane     F     in 

which the new trajectory lies must now be so  oriented &B to be per - 

pendicular to the angular momentum vector     c.x,J.\^   ^ of the 

new trajectory. A difficulty arises,   however,   due to the fact that 

it is not possible to construct a trajectory through   B    which has an 

arbitrary angular momentum with respect to the point   0.        That is, 

the expression 

cannot be solved for      1/    (J$y) except in the rather special case 

that  Xf+y&uiv     is perpendicular to   R*   .      This constitutes a strong 

selection rule on classical transitions in which the internal angular 

momentum goes from    Xa       and    ±&       to     J^* and    Xj/    . 
the 

Unless the net change ofAcomponent of the internal angular momenta 

along the radius vector   R*       is zero,   the transition is forbidden. 
ab 

When the transition is defined quantum mechanically,   however, 

the angular momenta of the initial and final states are not completely 

specified,   so that in the correspondence limit a single quantum 

mechanical transition corresponds to a whole family of classical 

transitions,   and the significance of this selection rule is somewhat 

modified.    This may be seen by considering the two general cases 

which crise when we solve   Eq.   2.2-12   for   •cTUv. (£_abJ • 

The simplest solution of this equation arises when we consider 

a transition in which the angular momentum associated with the 

internal motions remains unchanged,   as is the case for example 

in a pure vibiational transition.    In this case Eq.   2.2-12   immediately 

gives the result that    £y^rS^b)   is colinear with    Uz^^L-ab)       so that 

the plane     F   coincides with the   xy   plane and the   angle       f* is 

zero.    Such a transition is always allowed. 

>t* 
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When the internal transition does involve a change in the internal 

angular momenta,   as in elecvronic or rotational transitions,   it is 

necessary to consider the internal angular momentum of the quantum 
12 

mechanical systems in the light of the correspondence principle 

Since the quantum mechanical operators for the   x,    y,    and   z 
13 

components of the angular momentum do not commute     ,   it is not 

possible in quantum mechanics to specify the angular momentum of 

a system precisely.    It is possible,  however,   to specify the square 

of the total angular momentum and an arbitrary component,   say in 

the    z   direction. 

The situation is illustrated in Fig.   2.2-4. 

Fig    2. 2-4   Classical and quantum mechanical 
descriptions of the angular momentum. 

12.   L.  I.  Schiff,   lac.  cit. ,  p.  16. 

13.   H.  Eyring,  J. Walter and G.  Kimball,   Quantum Chemistry, 
Wiley,   1944,  p.   39. 

am '•jstm 
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Classically the vector      Xa. is precisely specified by     I J^cL] , 

the polar angle      &o- and the azimuthal angle     f<£ •      Quantum 

mechanically we may specify only the length      I £«•/ and one 

component,   say the    %   component given by the angle     Qc • In 

fhe correspondence limit the azimuthal angle      fk       is completely 

uncertain,   so there is equal probability that the angular momentum 

vector lies anywhere in the cone of half angle      0*- Thus the 

single quantum mechanical state corresponds to a whole family of 

classical states,   and a quantum mechanical transition of the angular 

momentum vector between iwo such cones corresponds to a doubly 

infinite set of classical transitions.    It is the composite behavior 

of this family of classical transitions which corresponds to behavior 

of the single quantum mechanical transition. 

Thus if the quantum mechanical transition in which 

^O ~*  ^£"*      involves a change in angular momentum,  Eq.   2.2-12 

may not be solved uniquely for ^ttx*^ (£?*>) .     Instead there is 

obtained a family of solutions corresponding to an equal probability 

distribution of the classical variables   <p&, ft ,  <&. and    <^t> . 

All members of this family which are perpendicular to   R* . .   hence 
j ao 
I which are consistent with the conservation of angular momentum,   are 

kl 
used to construct final trajectories   T     .       Originating from every 

ij kl point of   T    ,   then,   we expect a family of final trajectories   T 

Illustration of this principle in the general case is difficult, 

because the coordinate system in which we analyze the transition 

(Fig.  2. 2-1)   is not in general fixed in space 3o that analysis of the 

angular momentum vectors m it would be very complicated.    Consider 

the special case which arises when       *r   (•B?l>)      is spherically symme- 

I 

trie.    Then the entire trajectory    T       lies in the   xy   plane and the 

coordinate system is fixed in space so that the    z   direction may be 

taken as the axis along which components of all internal angular 

momenta are known precisely.    In Chapter III   it is shown that 
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the relative motion of rigid,   linear polar molecules may be approxi- 

mated by such a spherical potential,   so the case is of considerable 

physical interest. 
Akf, 

The restriction that     x^CRcit)    be perpendicular to   R*        may 

be expressed in the form 

where,  for example 

This result may be derived immediately from the conservation of the 

component of the angular momentum along OB,  noting that the trajec- 

tory angular momenta have zero component along this direction. 

Equation 2. 2-16   implies a relation among the four azimuthal angles 

d>£       $b ,    *?*        and       fb>    so may be looked upon as a third 

selection rule which modifies application of the correspondence 

principle. 
kl That this selection rule limits the family of   T       diverging 

from point   b,    but never entirely forbids the transition may be seen 

by rewriting   Eq.   2.2-12   in the form 

| i*" | /***!«£    [_C^faK    +b*,\ *«*<?£] 

(2.2-1?) 

••   « A i „U w, 1 -i-       o.      ^ ,„    OP,1  /       •=    C 

Clearly 
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i 

i 

is always an acceptable solution of this equation,   for arbitrary   1\ . 

Thus for any internal transition,   one or more solutions of the 

angular momentum equation   (Eq,   2. 2-12)   may be obtained which 

give values of      A_f«.-*«CR"bj      satisfactory for determining    /? CR*b) 

and the angle       P .     If there is only one resulting trajectory,   its 

probability    is given by the change in the transition probability 

p-^v» ,^ over that increment of the initial trajectory   T 

at which the transition occurred,   as discussed in Sec.    2. 1.    If 

there is a family of resulting trajectories,   the probability of the 

entire family is determined by this change of the transition probabil- 

ity,  and the distribution of probability within the family is obtained 

by assuming that all values of the azimuthal angles    ^o-/ <& / *<* 

and cfb which are consistent with Eq.   2.2-12   are equally 

probable. 

Thus we have a complete and unique method for constructing all 

possible trajectories in molecular collisions and of assigning a 

relative probability to each of them. 

In the general case of transitions involving a change in the internal 

angular momentum there will always be some relation of the tort 

given in Eq.   2.2- 16   relating the geometric location of the transition 

on the trajectory and the four azimuthal angles     fa j    •b ,     T^ 

ft *• and 74     . Thus if we ask about a particular quantum mechan- 

ical transition at some specified small interval along the trajectory 

any thitc of these azimuthftl  angles may be considered as independent 

variables    say      fya.  ,   'jb and      ^o-    ' For each choice of 

these three angles,   we may solve Eq.  2.2-15   for a value of 

F>     t. ROLO   :fJ, <#s'/ fyo-J and determine the angle   F( &<t, efCt'f%j $<>/ 

by requiring that the plane   F   be perpendicular to the new trajectory 
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angular momentum. The family of final trajectories resulting from 

a transition which takes place between time   t   and   t + dt   along the 

trajectory may be thought of as a function cf the three  aziuiuthal 

angles and the time,   so we may write 

According to the correspondence principle there is equal probability 

that these angles have any value between   0   and   2   77    , so if we 

wish to consider any function of the trajectory }   r(.T"'J ?    its value 

averaged over the family of trajectories resulting from the quantum 

transition at time     t   may be written 

I FFr,y = & JJj^•**o '* -*' <*     „2.18) 
o  o   a 

For example,   the average value of     f{6)       is given by 
^Ti  1.1 J»" 

I f*>       -'   /** jjj ?<*'<*''***>    *&   4f*' *f* (2.2-19) 
The probability that the transition occurred in the time interval 

d P^T*   at) 
dt   ii given by        —\.L so *^e average value of the quantity 

\~CT*')   lor all possible final trajectories resulting from a single 

encounter is given by 

i 
i 

-too 

K--Fr>fk,     I    ^FrtkM.j******-'* 
o o 

From the selection rules resulting from the conservation of energy 

and the magnitude of the anp: «ar .nomentum,   it is to be remembered 
kl 

that those final trajectories   T       are forbidden which give imaginary 
->rK<' s>Kf velocities      Is or values of      /3 whic-h are less than the 

inter molecular separation     K * 
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III.    SAMPLE CALCULATIONS FOR RIGID LINEAR 
POLAR MOLECULES 

In this chapter we illustrate the general theory derived in 

Chapter II by making sample calculations relevant to the study of 

rotational energy transfer in collisions between rigid linear mole- 

cules containing ideal electric dipoles.    In order to be specific, 

actual numerical results will be given,   using molecular constants 

for HC1   molecules. 

An approximate spherically symmetric potential energy function 

for describing the relative motion of the molecules is presented in 

terms of London's solution of the adiabatic clamped equations.    The 

form of these potentials suggests why the viscosity of polar gases 

actually can be described by the present theory for spherical 

molecules. 
,» inn     /j, \ r--,  hi 

The various transition probabilities   /"CJ-,*t     ,    i/,^J, 

and ~    * introduced in Chapter II   are calculated and discussed 

for the special case of constant velocity linear trajectories.    Inves- 

tigation of 57 L ^._,^/ indicates that the distance of closest 

approach in an encounter is an unlikely place for the inelastic trans- 

fer to occur. 

3. 1      The Isolated Molecule Wave Functions and the Inter molecular 
Potential. 

a)     The wave functions. 

Consider a diatomic 

separated by a distance     d .    Suppose that at the center of mass of 

Consider a diatomic molecule with atoms of mass   m     and   m, 
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the molecule there is an ideal electric dipole      p     oriented parallel 

to the molecular axis. 

If   d   is held fixed,   the solutions of Eq.   2. 1-2 describing the 

motion of the molecule relative to its own mass center are simply 
1 

the rigid rotator wave functions and energy levels   .    Thus for 

molecule   a, 

and 

EL     '    ^Ci°-r°I± (3.1-2) 

and similarly for molecule   b.      Here    1      is the moment of inertia, 

which in terms of the reduced mass      M.        is given by 

•*'  *•' 

b)      The potential enerev of interaction. 

The energy of interaction between two ideal dipoles of strength 

1.      For an example of the quantum mechanical solution of the 
motion of a rigid rotator,   see for example,   H.  Eyring, 
J.  Walter,  and G.   Kimball,   loc.   cit,,p.  72. 

A*   9      U*   C^JW (3.1-1) 

Hd -        "     d (3.1-3) 1 /in, i-stoi^ 

V 2 
fa   (bijCp*.)       are the spherical harmonics defined as 

i   L*-J are the associated Legendre functions,   give.* by 

• I , / •*- tl»l 

R -  777, (/   *; •        dxirl~'  K 

This definition is taken from   MTGL,   p.   905. 
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p      and  j>        is given in vector form by 

(3.1-4) 

In a coordinate system in which the line connecting the mass centers 

of the two molecules is taken as the polar axis,   so that    0<x.   and   Qb 

are polar angles giving the inclination of molecules    a   and   b    relative 

to this axis,   and      'fa-       and      <^c     the azimuthal angles about this 

line,       zpo^p    takes the special form 

f '£abl     u. —       (3. l-4b) 

The total energy of interaction between polar molecules may be 
4 

described approximately by the Stockmayer potential 

fet^,rb,,y,c,    :=.   ye-UiB-J       (i^/J (3. 1-5) 

The first brr ;.keted term in this potential is a Lennard-Jones type 

spherically symmetric potential describing the hard core repulsive 

energy and the attractive dispersion energy.    The remainder is just 

the dipole-dipole interaction energy.    The constants    <T~      and      6r 

are characteristic of each molecule and are determined experimen- 

tally. 

The molecular constants for   HC1     which will be used in sub- 
5 

sequent calculations are as follows   ; 

3. MTGJL,   p.   851. 

4. W.   H.   Stockmayer,   J„   Chem.   Phys. ±,   398,   (1941). 

5. The values of     I     and  « are taken from G    Kerzberg, 
Spectra of Diatomic Molecules,   Van Noatrand,   1950,   p.   534. 

Those of  2t   f %1 ^^     LU
~JL J        

are from MTGL,   p.   1112. 
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-40 2 
I   =   2.6422    X     10 gm.    cm. 

fi   = 1.62645   / 10"24 gm. (3   l6) 

p   = 1.034       * 10"18 e.s.u. 

Cfli.j. = 3.305      * 10 "8 cm. 

[$lr  = 360     °|< 

Here [^"/A.Jt - ^nd    L^"JI..T.        are constants obtained by fitting 

viscosity data to the Lennard-Jones potential,   and would not be 

expected to be precisely the same as the constants obtained by fitting 

equation of state data to the Stockmayer potential.    Since Stockmayer 

ccnstants are not available for   HC1   the L.  J.   values will be used 

as a rough estimate of the spherically symmetric potential. 

3. 2   The Effective Potential 

It is not possible to solve Equ.  2. 1-3   exactly for the adiabatic 

clamped wave functions   ty^J,    and the effective potential     7     (%&•*) • 
6 

London  ,  however,  has obtained approximate solutions of the problem 

which allow us to construct approximate effective potentials which 

depend only on the distance of separation     | £^fc I .    London used 

a modified perturbation method which he called the method of unsharp 

resonance,  but the solution is equally well viewed as a variation 

method. 

When the mole ;u.le» are far separated the wave function of the 

6.     F.   London,     Z.  Physik,   63,   245 (1930). 

v 
! 
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system may be written as a product of spherical harmonics 

\ /'"b /"* v^1 

.j        -    ^° ^) l1b
f**'A) (3.2-1) 

For convenience we write this function for the initial state      tyo 

where the superscript denotes that it is an unperturbed function, 

and the subscript stands for the four quantum numbers   j   ,     m    , 
a a 

j   ,    and   ITL    .    For a trial function,   London forms a linear combina- 

tion of    ~\p0 and the twelve    (at most)    unperturbed functions 

with which it combines in the sense that 
lO 

(IP" I   £*,/<#)    7^° 
These twelve functions are 

C  - LP"( j»-/, /rr>a-i; lb-i, *»*+/) 

(3.2-2) 

m|      greater Functions with negative     j     values or values of 

than the corresponding   j    are taken to be zero. 

The best value of the energy obtainable from this linear combin- 

ation is given by solution of the 13'th order secular equation 

l(^/S*t/+D     *,U£-&°.-.fJM=-° (3.2-3) 
h 3 o, /, /a. 

Here the E. are the energies corresponding to the unperturbed 

wave functions ipi . If relative coordinates are chosen so that 

the intermolecuiar axis is taken as the z direction, the secular 

determinant takes on a relatively simple form.    All matrix elements 



Si. 

vanish except those in the first row and the first column,   and the 

diagonal elements become equal in groups of three.    London shows 

that the secular equation may be reduced to the fifth order equation 

Raj'* a, a± 
+• 

Here the      £,;        are given by 

(3.2-4) 

-     *'[£     '*£] <*°     ^fe'   -fej .3.-3. 

6 = ^[ -£ xbj 

and 

«-M *&/ &J ^r +(.**/«,/ rr *< «*-.' sM«r 
' ~ (3.2-6) 

The     £*-,-;     are given explicitly in terms of the quantum numbers in 
•7 

MTGL   .    For example,   the coefficient       CL<f     is given by 

,Uj±U±Z^Li^ '/nu  -j]ih   '»'•*')(U-"»*+ill     (3.2-6b) U9(i*,m*;]t •/$: 

it* -0Lv^fc+ir] 

The solutions of Eq.   3   2-3 fall into two general classes,   categor- 

ized according to their behavior for large values of   R 
ab 

For non 

resonance interactions ( j afc j .± 1) the physically significant 

solution is negative and is proportional to 1/R , It is shown in 

MTGL   that the coefficient of this term is given by 

7.     MTGL   p.   1000 
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Q >n<» rat. 

-& 

Vab 
6, 

(3.2-7) 

For resonant interactions    (j     = j     ±   1,     and    p     =   p     =  p) 

there are two solutions of Eq.   3. 2-3 which for large R   ,   differ 
3 ab 

only in sign and are proportional to 1/R  , .      In MTGL the 
ab 

coefficients are given as 

T 
#»<«*->«*    =     -  *<    |fcji (3.2-8) 

Solutions of Eq.   3. 2-3 for these two cases are    tabulated in Table 

3. 2-1 and are plotted in Fig.   3. 2-1,   for the interaction of two HC1 

molecules.      Curve A    gives the non resonant interaction when both 

molecules are in their ground states.     The pair of curves labeled   B 

give the interaction energy for the resonant case   j    =1,    m.    =0; 
a a 

j     = 2,    m,   = 1.    The pair labeled C are for the resonant case   j     =2, 

m    = 0;   j    = 3,    ITL   = 3.    For comparison,   curve   D   gives the 

attractive part of the Lennard-Jones potential,   which is proportional 

to  1/R   , .    Molecular constants are taken from Eq.   3. 1-6. ab 
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ajNon Resonant Interactions 

The non resonant interactions are best examined by looking at 

the coefficient of the    1/R  ,     term which describes the interaction 
ab 

at large separations.    The constant    B„^,cs   for several sets of 

quantum numbers,   and for     R measured in units of 10 

is given in Table    3.2-2, 

•8 
cm. 

Table  3. 2-2 

Coefficients of the interaction energy term proportional 
to    1 /R ,     in non resonant collisions 

ab 

Internal states 

=   0 ,    m      =   0;   j      r,   0, m,     =0 
a                 D u 

=   5'    ma   3   2;   jb    =   5* "S   = 2 

= 10.    ma   =   0;   j      - 10, rtL     =0 

ja   =   5.    ma   =   0;   jb    =10,    rr^ = 0 

V»res LerS rg   A 
61 

9.06 * 10 

1. 12 * 10 

1.34 A 10 

6.04 / 10 

-11 

-10 

-10 

-12 

This may be compared to the coefficient of the term in the  Lennard- 
6 

Kab' 
Jones potential which varies as    1/R 

For the values given in Eq.   3. 1-6   for   HC1,    &> 

Since   B represents some sort of an average of the dispersion 

energy and the various dipole-dipole forces, it appears iiKeiy mat 

the dispersion energy is at least oi the same order of magnitude as 
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the various non resonance dipole-dipole forces.    London      investi- 

gates this question in detail for several polar gases,   and concludes 

that none of the forces between HC1      molecules which arise directly 

from the electric dipoles are as large as the dispersion force. 

b)      Resonant interactions. 

The resonant interactions are of particular interest,   and are 

best investigated by looking at the coefficient     a.    (Eq.   3. 2-6b). 

First,   however,   note by comparison with Eq.   3. l-4b    for the static 

interaction of two dipoles,   that   a      represents some sort of an 

average over the angular factor 

JH^n 9<x. SWY\ &* C-o-a^o. - ft,) 9^  oo-x. <9t 

which gives the orientation of the dipoles relative to the intermolecular 

axis.    The absolute value of this factor varies from a maximum of two 

when the molecules are parallel      ( 6>a  -   O, 71 \   9b -  O, r/J   to a minimum 

of zero when they are perpendicular    (&a.   •  €>t   ~ T/<   Hence we ex- 

pect   a     to lie somewhere in this range.    For some typical resonant 

interactions   a      has the values given in Table    3. 2-3. 

8.     F.   London,   Trans.   Faraday Soc. ,   189 ,   8(1937) 



Table 3.2-3 

London Factor for the Coefficient of the Interaction 
Energy Term Proportional to    1 /R .     in resonant 
Collisions. 

57 

Internal states 

K    = 1, m a 
= 0;   jb = 2. 

"b 
=  1 

1. m a -• 0;  jb = 2, 
"b 

= 2 

1, m a -0;   jb = 2, 
*% 

= -1 

4, m 
a = 0;   jb = 5, "^ 

= 0 

0. 586 

0.436 

0. 169 

0. 531 

I 

Apparently the averaged dipole-dipole energy is of the order of 25% 

or less of the maximum interaction energy of the static dipoles. 
9 

Krieger     performed a very interesting calculation of the viscosity 

of polar gases,  by using a spherically symmetric potential function 

related to the Stockmayer potential.    He assumed that the energy of 

interaction between polar molecules could be expressed in the form 

4> -Lao 

_   a. 
Ro.L 

Here     p     is the experimental value of the dipole moment,    and     °~~ 

and       €• are adjustable constants used to fit the experimental data. 

This potential energy function corresponds to the Stockmayer poten- 

tial when the dipoles are oriented in the parallel orientation of minimum 

energy,  as in the accompanying diagram. 

F.   J.  Krieger,  Project Rand Report   RM-646 (1951). 
See also   MTGL   p.   597. 
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©—-—s &—[•—e 

' v <k    Kab > 

For this orientation the angular factor of the Stockmayer potential 

(Eq.   3. l~4b)    is equal to minus two. 

Although this theory ignores the effects of the internal degrees 

of freedom,  Krieger is able to fit *he experimental viscosity data 

of polar gases over the entire experimental temperature range to 

within experimental error.    This surprising success might be inter- 

preted as follows; 

1.  An appreciable fraction of the collisions in a gas of rigid 

rotators are resonant collisions.   ( 3t>  r ^c*. - l) The fraction 

of resonant collisions,       Tres is given by 

» -t'i^srri £~r       ~i(*''}j&r   , .  ,   -(^'U^)—n 

3£ 
I ras 

;*r + ff^e    'Thr^*-<)e t^ e      ^
T 

tu*o ai(i*0&±rl" 

(3.2-9) 

2 \ f*j«x*i*3) e       iiA7 

\   Z ujf/;   e   ' JJhr 
L   >=« j 

For large values of   1   and   T   this may be evaluated by replacing 

the sums by integrals.    In this case 

Tr«s t   *•       VaTAT (3   2_9a) 

For collisions between   HC1   molecules at 300    K. ,   this gives 

-V res     -   .2.8 3 

2. In resonant collisions the translational energy is conserved, 

so that the collision is sort of a quasi clastic collision.    In   Eq,   1. 2-2 

for the    Uhlenbeck iorm of the viscosity coefficient the term multiplied 
k] 

by the net change of internal energy   ^E   . vanishes,   and the 

i 

- 

• 

rr 

• 
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property we average over all possible encounters is just 

a? £ /  - u^: Xj 

as in the expression for spherical molecules,  Eq.     1.2-1. 

3.  Apparently the quasi elastic resonant encounters are of such 

importance in viscosity that Krieger  *as able to predict the essential 

behavior of the gas simply by including the long range energy term 
3 

proportioned to    1/R , .    We have seen that in all non resonant inter- 

actions the coefficient of this term should be zero,   and that in 

resonant collisions it should depend on the quantum states of the 

colliding molecules.    In resonant collisions,   moreover,   it should 

be considerably smaller than Krieger's value of   2 "P ,   and should 

be repulsive in some collisions,   and extractive in others.    Adjustment 

of the coefficients       <T~       and      6        in Krieger's theory is able to 

compensate for all of these approximations. 

Although   these considerations have been in terms of our study 

of linear molecules,   whereas Krieger's measurements included 

non linear molecules,   the general behavior would be expected to 
10 

be the same.    Margenau       and Warren have investigated the first 

order interactions of ideal dipoles imbedded in symmetric tops,   and 
3 

find    interactions proportional    1 /R  .    even in the non resonant cases. 

c)      Suggested procedure for considering the viscosity of ~~lar gases. 

From the considerations in this section,   of the effective inter- 

molecular 4 oLential arising between linear molecules containing 

electric dipoles,   we would suggest the following procedure foi  pre- 

dicting the viscosity of gases composed of such molecules: 

  

10.   H.   Margenau and D.  T.  Warren,   Phys.  Rev., _51_,   748(1937) 
See also MTGL,  p.   1004. 
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Consider the gas as a mixture,   with each set r£ rotational quantum 

numbers defining a separate molecular species.    The fraction of the 

molecules which are of species 0~ specified by the rotational 

quantum numbers     jo, and      m«, is given at thermal equil- 

ibrium by 
- i<d )»-*') ar*.r 

-f. 
(*< +1) (i 

*(ttt)J£. (3.2-10) 

p=» 

When two molecules of species   a   and   b   collide such that 

£a*f-}b-£/       the dynamics of the encounter are determined by the inter- 

molecular potential function. 

cp =     Y _t^bj (RSJ J (3.2-11) 

"Where       <T"        and       6        are experimental constants determined 

by fitting experimental values of the second virial coefficient as a 

function of temperature to the Stockmayer potential (Eq.   3. 1-5). 

The fraction of the collisions in the gas which are governed by this 

potential is   (_/ - Tr^sy     where        Tr*»    is given by Eq.   3. 2-9a . 

When species   a   and   b   are such that   j      =   j,     +   1,  the 
a b   —" 

potential energy of interaction is taken to be of form 

<p= »*[(-£)"-(£)'] - $£? (3.2-12) 

here     p     is the experimental value of the dipole moment,   and the 

quantity      j is related to the quantities     a       defined in 

Eq.    3.2-6b. 

Let us call a collision in which either of the molecules is in 

state     a   and the other in state   b   an     a-b   collision. If we 

label our molecules such that    j      =   j      +    1,  then in half of the 

a-b   collisions we take 
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and in the other half 

f (jc, »»*,, j.„, <vn0)     -       - 4y( 3° •-'^-;  J»/»»J 

The fraction ox the collisions in the gas which are    a-b   collisions 

is just   2f  f, ,      where the factor of two results from the fact that a b 
either molecule may be in the higher energy state. 

The dynamics of encounters governed by the  Lennard- 

Jones type potential of Eq.   3. 2-11    have been calculated and 

tabulated.    ~     The dynamics of collisions governed by the potential 
g 

of Eq.   3.2-12 are given in Krieger's work   ,   for negative values 

of      j     » If Krieger's calculations were extended to include positive 

values of       J it would not be a difficult matter to test this 

theory of the viscosity of liuear polar molecules. 

The viscosity of symmetric top molecules with imbedded electric 

dipoles could be calculated in a manner very similar to this,   using 
9 

the effective potentials calculated by Margenau and Warren   .    The 

chief difference wculd be that a larger fraction of the encounters 

would b 

to    1/R 

would be governed by potentials which contained a term proportional 
3 

lab * 

3. 3 The Probability of Transition 

. 0) f-. Ci«*p 
a)      Comparison of     P    *   .   P    *J and     P . .  ») 

The three transition probabilities introduced in Chapter II were 

11.   MTGL   p.   1132. 
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and 

I        -<x> 

['ilfL+E'-eC-eQs 
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(jutull §o*\JUi,Ml)   £t< 

,Kel «L&k/.„<*' 

-« 
E"i«»£/4*(*';J    - E'^iR^cf)] 

\** i <±&b 

(2.2-1) 

(2.2-2) 

(2-2-6) 

d«/-' 
ci * <. j -? < <: 

Here     P°ftJ was derived from a time dependent perturbation 

procedure in which the unperturbed functions were taken to be simple 

products of the isolated molecule wave functions ML(ib) and    Mb <•£*) . 

" iWJ was obtained by using the adiabatic clamped functions 

*fLt(li,G>/&^    as a time dependent unperturbed set.    The function 

vj-iz-f-1 was suggested in Sec.   2.2   as a semi-classical analogue 

of P°Ut) 
<• J -»I'J 

In order to better understand these three functions,  we calculate 

each of them for the special case in which the equivalent one particle 

trajectory is a straight line traversed at constant velocity (Fig.   3. 3-1) 

Although this approximation would not in general be valid if we were 

seeking precise numerical results,   it will be adequate? for illustrating 

and comparing the general behavior of these functions.    The advantage 

of the approximation is that the time dependence of the matrix 

elements of xW originating in the factor    1/R 
.-%. ab now 

appears simply as    L bv t ^tvJ 

For the purpose of these approximate calculations we also 

replace the adiabatic clamped functions     l//^       and 

I 
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i 

\ Ra.-Lb^rt-r 

', rVb-iX —> 

*=o 
3* 

Fig.   3.3-1       The simplest case of an 
equivalent one particle trajectory. 

' 

energies    t ^  (fa^     by their zero order approximations     JJia.Mb 

and     F^   • Ffc
J . 

With these approximations,   the transition probabilities may be 

written 

(3.3-1) 

0/ 
p fej 3K., !>-^r/i 

J (3. 3-2) 
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D F 
(3.3-3) 

The various quantities appearing here are as follows; 

3 4     ^ *E<: 
- *• 

? - 11 
b 

C       —       — 
*e 

*% 
"•( 

**     _ ve (   p*. ?* )(    <*E*i  p 

d- a 
K Ob 

?«- ft. 
(M-ZJ^I I sP>^|>ii* ^J 

ifl ?    r    ?** 
- j*«j*J»k^.«X/w[- j ^^ T*?J K;<*« W> 
Here the qxiantum numbers abbreviated by   ij,    and   kl   are 

3       ~   5 b,  /)*> fa -^       ""^  <* to /  A# 

A*.,  Av 

We also use the result that 
05   „-°3 

12 

d 
-   77     L, 0)    . 

Where        f-/<^ 

kind,  tabulated in Jahnke and Emde     .      The integrals      c^-c* 

is the first order Hankel function of the first 
13 • !<* 

12.  G.N.Watson,   A Treatise or; the Theory of Bessel Functions 
Camb    Univ.  Press,  Second s:d.  p.   MZ-. 

13.  E.  Ja hike and F. Emde,,  Tables of Functions, Dover, 1945,  p.  133. 
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may be calculated directly from the properties of spherical harmonics 
14 

or they may be found listed in convenient form by Margenau 

In Table    3. 3-1   and Fig.   3. 3-2   we give calculated values of 

the three transition probabilities for the case when the initial relative 

velocity   g   (taken tc be constant throughout the encounter),    the 

collision parameter   b,  and the change in internal quantum states 

are 

g   =   3. 1924   x   10      cm. /sec. 
-8 

b   =4.89       *    10"    cm. 

ja   =   4,   ma   =   0;   jb   =    3,    rr^ 

Aa   =   5,  /<a   =   0; /b   =   4,     ^b 

=   0 

• 

\ 

The constants correspond to a  typical encounter for HC1 molecules 

at room temperature, 

principal The principal deviations of      r    (*J and    r    Cfcj from the 

general form of     P it) are not too difficult to understand.    The 

oscillatory motion of these two probabilities,   with period equal to 

~H/^> E a is a typical quantum mechanical phenomenon which 

may be interpreted either as a diffraction effect resulting from the 

wave-like nature of matter,   or as a consequence of the uncertainty 

principle.    From the point of view of the uncertainty principle,   we 

are not allowed to specify the time interval       5~-t        during which 

the energy change     Z^C C} took place more precisely than about 

c3~ t >'   Af 

14.  K.   Margenau,   Pev.   Mod.  Phys.   11,    1   (1939). 
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Fig.   3.3-2    Probability of a rotational 
transition along a straight line trajectory 

*mmmm>%»i'« 
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Table 3.3-I 

Transition tfrobabilitiet along a Straight Lins TrajooW* 

*>    - 

(M•** «/ 77) 

P%    tiO3, P (t)    x /O* 
\{M£M:'JSI Mi Ml)!*- 
1              ^E           / 

x 10* 

-7.0 
-6.5 
-6.0 
-5-5 
-5.0 

0.0213 
0.0072 
0.0085 
0.0000 
0.02£b 

0.0000 
0.0000 
0.0000 
0.0000 
C.0005 

0.0031 
0.0062 
0.0080 
0.0116 
O.OI95 

-4.0 
-3-5 
-3.0 
-2-5 

0.0236 
O.O7O9 
0.142 
0.205 
0,4<37 

o.oou 
0.0023 
0.0053 
0.0127 
0.0322 

0.0006 
0.0024 
O.OO3O 

0.0340 
0.0621 
0.1190 
0.2452 
0.5325 

-2.C 
-1.5 
-1.0 
-0.5 
0.0 

1.16 
2.5S 
5-97 

12.6 
13.1 

0.0950 
0.2078 
0.4214 
O.5045 
O.3344 

0.0084 
0.0230 
O.O625 
0.1100 
0.1496 

1.221 
2.867 
6.409 

11.82 
14.95 

0.5 
1.0 
1.5 
2.0 
2-5 

16.6 
7-Ul 
1.21 
1.16 
1.51 

O.8667 
1.276 
O.6576 
O.O95O 
0.268 

0.1860 
0.2423 
0.2782 
0.2877 
0.2961 

11.82 
6.409 
2.867 
1.221 
0.5325 

3.0 
3.5 
4.o 
4.5 
5.0 

o.6i4 
0.0361 
0.263 
0.490 
0.320 

0.4292 
0.3278 
0.2508 
0.2909 
0.3242 

0.2967 
0.2985 

0.2452 
0.1190 
0.0621 
0.0340 
0.0195 

5.5 
6.c 
6-5 
7.0 
7 5 

0.17s 
0.269 
0-351 
0.301 
0.232 

O.3O37 
O.2863 
0.2972 
O.306S 
O.3OO3 

0.0116 
0.0080 
0.0062 
0.0031 
0.0021 

8.0 
00 

0.374 
0.2591- 

0.2946 
0.2991 O.299I 

0.0014 
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This means that wc are not allowed   t& ask *bout the probability of 

transition during time intervals less than that corresponding to about 

one cycle of the curves of Fig.   3, 3   1 
(OJ 

The  large maximum in    h$*t  about   r - O     may be understood 
r-,'°> 

by noting that   r ^jff      actually gives the transition probability for 

an experime.it in which the c.   'ision is allowed to proceed until 

time     t,    that the perturbation is suddenly turned off.    The audden 

turning off of the perturbation itself induces transitions,   corresponding 

to the fact that at that moment the true wave function of the system 

has large contributions of other unperturbed states,   simply because 

of the adiabatic distortion.    For comparison,   curve   D   of Fig.   3.3-2 

is a plot of 

the first order perturbation estimate of the contribution of the   kl 

state to the wave function in an adi?.bztic encounter.    This curve 

accounts very wellfor the wide maximum in      r., J-i)   . 

The transition probability   \    J&t      corresponds more nearly to 

an experiment in which at time   t   the relative motion of the molecules 

is stopped and they are separated adiabatically to infinity.    The fact 

that there may   still be something of a maximum in the vicinity of 

the point of closest approach (t   •   0)    may be due to the approxima- 

tion of evaluating the energy and matrix elements in terms of the   XltPD> 

The fact that   Rjjifv,     a"d P   C*J        approach the same value at 

t - CD     is understandable,   since in thin limit the adiabatic functions 

become identical with the simple product functions.     Mathematically 

the   equivalence may be demonstrated by integrating Eq.   3. 3-1 by 

parts; consistent with the assumptions we have made in the evaluation 

of    P.Jfc>       ,   it fellows immediately that   R,°«  - P.'-?*    ,   f.>r all 

transitions. 
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_    K* 

b) Dependence cf the transition probability on g, b,   and    /^ t<.j 

To show how strongly the transition probability depends on the 

relative velocity,   g,   the collision parameter, b,   and the energy 
~'L p'"^i' exchange At^      ,   we have calculated     '£jj»i.     for collisions between 

HCl molecules,   varying each of these quantities separately.    The 

results are given in Table 3. 3-2. 

From these calculations we see that changing each of these quan- 

tities by less than a factor of   two changes the total probability of 

transition by a factor of about one hundred.    In an actual calculation 

of the cross sections,   this would mean that the main contribution to 

each differential cross section would be expected to come from a 

relatively narrow range of relative velocities and collision parameters 

c) Location of the transition along the trajectory. 

In the semi-classical theory of collisions it is necessary to know 

where along the trajectory a given transition has taken place.    In our 

semi-classical description of collisions this is given by the shape of 

,r) or by the related function  ^V L*£i-r*$J 
f~   ' ' f to 
f    ,.-. gives the probability that the transition has occurred up 

to time t,   and       •—• \ r-    &      i        gives the probability that the transition 
ci t   — '  <.  J   t   -• • J 

occurs in the time interval   d*     about t.    From Eq.   3   3-3 it may be 

seen that to the approximations used in deriving that equation,   each 

of these is    given by "shape factors" which depend only on the reduced 

variable ,   z = gt/b.    Thus they may be written 

/     Li) 
I    i j   -JKf 

-JLi) 
0) 

(3.3-4) 

and 

ALP 
C~*-*a 

UN 

cr .0! 

i ^ n&. (3. 3-5) 

wn~- ^^Kmrnammaamtxi^-.JT-^-OT-TTT* 
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where 

r -2- f   —AL 

and 

s LZ) 
_7     J *L 
*     lit*-}* 

To illustrate the behavior of these functions,   we give calculated 

values of S(z) in Table    3. 3-3 and plot the results in Fig.   3. 3-3.    The 

most interesting feature of this curve is the plateau in the vicinity of 

t = 0,   the distance of closest approach.    The significance of this plateau 

is seen even more clearly in Fig.   3. 3-4 where we plot the function 

S'(z).    From this curve we see that the probability that the transition 

occurs during an infinitesimal time increment about t = 0 is zero. 

The maximum probability of transition occurs when       fit   - -/z ,~i • 

The location of the maximum of the function j£LP*?*7 a* exactly 

b/siS    is of course due to our approximate form of     P *•!*** 

but the zero at the distance of clos-st approach appears even in the 

accurate quantum mechanical formula.    Thus 

At  ')+• 
(Ci*i«c; x^j&r»(e*fi (tl„x& 

*>£,:,*) 
'- fe/if/^;^'| (3.3-6) 

*r 

B 
m 

i & 

Since the distance of closest approach is a stationary point of Rab> 

(yd I ifrl ^w ~ ^ at t = 0.    Thus the probability that the 

transition occurs in the time interval dt about the point t-0 vanishes. 

One must be careful in interpreting this result,   however,   not to 

conclude that the segment of the trajectory about the distance of clu&ci 

approach is always an unlikely place for a transition to occur.     In 
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,r-s~*» 
Shape Factors Assoc.V&tea with P^t? 

Trajectory 

for a Straight Line 

«t 
s (i) s»(») 

I 

0.00 
0.05 
0.10 
0.15 
Q.20 

0.25 
0.30 
o.4o 
0.50 
0.60 

0.70 
0.80 
0.9Q 
1.60 
1.10 

1.20 
1.30 
i.4o 
1.50 
l.bO 

1.70 
1.80 
I.90 
2.00 

0.500 
0.50h 
O.517 
0-537 
0.564 

0.996 
0.997 
O.998 
O.998 

0.000 
0.173 
0.335 
0.475 
0*527 

0.596 0. '000 
0.630 0.712 
0.703 0.718 
0.771 0,641 
0.830 0.526 

0.876 0.407 
0.911 0.302 
0.337 0.218 
0.956 0.155 
0.969 0,109 

0.978 O.O76 
0.984 0.053 
0.989 O.O37 
0.992 0.026 
o,99^ 0.018 

0.013 
0.009 

C.005 

I 

• Value* of S {%)  and S»(«) for negative z Bay be obtained 

by the relation* 8 C-z) » 1 _ s (s) and S'(-i) = S (+2). 
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some capes,   as in head on collisions;,   the particles may spend a long 

time in the configuration of closest approach and the probability of 

transition in this region may not be small.    This may be seen by writing 

d   \   VU)t    ~] 
<$tL iiJi?) i      as a function of the arc length   s.    Tbfcn 

e1 j^/^^H   ,3.3-7, 

Now in trajectories which are nearly like the straight line constant 

velocity paths used in this section, Q'-.      is indeed zero at the distance 

of closest approach,   so that the probability of a transition occurring 

in the element of trajectory   ds about the distance of closest approach 

is indeed zero,   as pictured in Fig.   3. 3-4,    In a head-on collision, 

however,  the arc length s becomes identical with the intermolecular 

distance Rab>   and the function •%&     is now large in the vicinity of the 

distance of closest approach.    (Actually it is r.o<    defined just at the 

dietance of closest approach because of a cusp in the function 

at that point,  but on both sides of the cusp -T^-       will in general be 

large.)    Thus in the limit of a head on collision,  the probability of a 

transition in the element ds about the distance of closest approach may 

become large.    It is interesting to note that in the limit of b = 0,   a 

head-on collision,   the two maxima of Fig    3, 3-4 move toward the 

origin,   indicating the likelihood of a transition in this region. 

The trajectory along which we are carrying out the time dependent 

perturbation calculation is symmetric,   about t - 0,   so in some sense 

it is true that the average location of the transition in grazing collisions 

is at the distance of closest approach.    In kinetic theory applications, 

however,   we are interested in the angle of deflection resulting Irom 

the transition,   so that it is by no means valid to expect that the 

distance of closest approach would be an appropriate average location 
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for all transitions. 

d}    The transition probability for ttsonant collisions 

The considerations of the probability of transition thus far in this 

section have been limited to non resonance interactions,   since we have 

assumed that    At^.;   -7= -^ in ail of our formulae and calculations. 
15 The classical analogue of a quantum mechanical system in resonance 

pictures the extra quantum of energy as being transferred rapidly 

back and forth between the colliding molecules,   so that in a measure- 

ment of the system there is equal probability of finding «ither molecule 

in the higher energy state. 

That this resonance situation applies to collisions in which the 

collision parameter b is so large that there is no appreciable deflection 

of the trajectory is indicated by the theoretical interpretation of the 

observed pressure broadening of microwave spectra.    Experimental 

values of the collision cross sections for the self broadening of 

spectral lines of polar molecules give collision diameters which are 

three to four times larger than the kinetic theory collision diameters. 

That is,  whereas most kinetic theory diameters are in the range of 

three to five Angstroms,  the microwave diameters usually lie in the 

range of ten to twenty Angstroms. 
16 

The theory of pressure broadening     indicates that, the largest 

contribution to the cross section for polar molecules comes from 

resonant collisions,  and that the observed microwave collision 

diameters may be interpreted approximately as the; critical value 

of the collision parameter b for which the probability of transition 

15. D.  Bohm,   loc.  cit.,p.  477. 
16. For a summary of the microwave theroy and experimental data, 

and a guide to the literature,   see W. Gordy,   W.  Smith and 
R.   Trambarulo,   Microwave SpectruHcupy,  Wiley,   1953,  p.   188. 
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during the encounter as one half 

Thus,   for collisions in which the collision parameter is less than 

the microwave value of the collision diameter,   we are justified in con- 

sidering both final states of the system as equally likely.    For collision 

parameters larger than this value,   the angle of deflection in most 

encounters is negligible 
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APPENDIX     I 

ALMOST ADIABATIC TIME DEPENDENT PERTURBATIONS 

When the Hamiltonian of a system changes slowly with the time, 

we may expect to be able   to approximate solutions of Schrocdinger's 

equation by means of stationary state energy eigenfunctions of the 

instantaneous Hamiltcnian. 

Let the Hamiltonian ot a system be   H (x,   t),   where   t   is the 

time,  and   x   denotes all of the space coordinates.    Let   v (x,  6) 

be the stationary state solutions obtained by setting   t = 6 ,   a constant. 

The v    ( x,   8 ) are given by 
n 

HITL.V^CX,*)  = E^1 ?£.(*/•; (A-l) 

We assume that the v    (x,  6) form a complete    orthonormal set of 

functions in the space coordinates at every time. 

If the total wave function of the system is known at zero time, 

wt may at later times write 

Ipc*, t) =2^ fi^v^^ e   Jo J d& 

(A-2) 

The expansion coefficients A. (t)   depend on time,   and the form of the 

exponential time factor has been chosen for convenience in subsequent 

differentiations. 

The following derivation is essentially the same as those 
found in D.  Bohm,   loc.   cit.,  p.  49V,   and L.  I.  Schiff,   loc.  cit., 
p.   207. 
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We may obtain the expansion coefficients   A. (t)   by requiring 

that     ^J(x.,-t)     satisfy the second Schroedinger equation 

h'5W,     -    it    ^-' (A-3) 

This gives 

d» 

0 = 6t^'[/fjW "UjO^  + #iw  ^'^J 6."    ° (A-4) 

Multiplying by v    (x,  t) P and integrating over all   x, m —' 
we obtain 

j 

where we have used the orthonormal properties of the   v. (x,  t). 

This  result may be simplified by rewriting the matrix elements 

(v     I v.).     From Eq.  A-l m'    j 

H Vi    -- *i vi 

Differentiating with reapect to the time,   we obtain 

If we multiply by    v    (m fi j) ,   and integrate over all   x,   we get 

immediately, 

Since   H   is H;rmetian, 

I 
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Thus Eq. A-7 gives 

( V„ I Vj)       = 
C 1      ~  C^yyy, (A-8) 

i 

and Eq.  A-5 may be written 

*• 

From here we proceed as in the usual method of the variation 

of constants.    If we assume that at   t = -CD   the system was :.n the 

pure state v  »    we may approximate the   A. (t) as 
o - j 

ft A it)   - <5~? 

so that 

i jlK><0 -E^&Jde 
/Zi     -<o 

n/tn Eo(0) - E^co) 
- (V^lfliVo) (A-10) 

The probability that at time   t   the system will be found in the 

m'th state is now 

\JL^ (v^lHlvi) &i' 

-00 

(A~li) 
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